Methylglyoxal, the dark side of glycolysis

نویسندگان

  • Igor Allaman
  • Mireille Bélanger
  • Pierre J. Magistretti
چکیده

Glucose is the main energy substrate for the brain. There is now extensive evidence indicating that the metabolic profile of neural cells with regard to glucose utilization and glycolysis rate is not homogenous, with a marked propensity for glycolytic glucose processing in astrocytes compared to neurons. Methylglyoxal, a highly reactive dicarbonyl compound, is inevitably formed as a by-product of glycolysis. Methylglyoxal is a major cell-permeant precursor of advanced glycation end-products (AGEs), which are associated with several pathologies including diabetes, aging and neurodegenerative diseases. In normal situations, cells are protected against methylglyoxal toxicity by different mechanisms and in particular the glyoxalase system, which represents the most important pathway for the detoxification of methylglyoxal. While the neurotoxic effects of methylglyoxal and AGEs are well characterized, our understanding the glyoxalase system in the brain is more scattered. Considering the high energy requirements (i.e., glucose) of the brain, one should expect that the cerebral glyoxalase system is adequately fitted to handle methylglyoxal toxicity. This review focuses on our actual knowledge on the cellular aspects of the glyoxalase system in brain cells, in particular with regard to its activity in astrocytes and neurons. A main emerging concept is that these two neural cell types have different and energetically adapted glyoxalase defense mechanisms which may serve as protective mechanism against methylglyoxal-induced cellular damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins.

Protein glycation by methylglyoxal is a nonenzymatic post-translational modification whereby arginine and lysine side chains form a chemically heterogeneous group of advanced glycation end-products. Methylglyoxal-derived advanced glycation end-products are involved in pathologies such as diabetes and neurodegenerative diseases of the amyloid type. As methylglyoxal is produced nonenzymatically f...

متن کامل

Effects of Methylglyoxal and Aspirin on In Vitro Coagulation and Clot Permeability

Backgrounds and Aims: Methylglyoxal (MGO) is an –α, β dicarbonyl aldehyde inevitably produced from triose-phosphate intermediates of glycolysis, and amino acid. Increased MGO in blood leads to alterations in coagulation, clot permeability and thus, atherosclerosis in children with diabetes; however, the precise mechanism is not clear. The present study aimed to compare differen...

متن کامل

Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal.

The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails ...

متن کامل

Methylglyoxal Comes of AGE

The posttranslational modification of proteins by methylglyoxal, a highly reactive compound derived from glycolysis, may contribute to aging, diabetes, and other disorders. In this issue of Cell, Brownlee and colleagues (Yao et al., 2006) demonstrate a specific mechanism by which methylglyoxal modifies a transcriptional corepressor to enhance gene expression.

متن کامل

Methylglyoxal Modification of mSin3A Links Glycolysis to Angiopoietin-2 Transcription

Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here, we report that in retinal Müller cells, increased glycolytic flux causes increased methylgl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015